Hole doping into the CuO$_2$ planes of the antiferromagnetic Mott insulating compound, La$_2$CuO$_4$ can be achieved, for example, with Sr or Li. In the case of La$_{2-x}$Li$_x$O$_4$ (LLCO), the holes tend to be localized near the Li sites, whereas with La$_{2-x}$Sr$_x$CuO$_4$ (LSCO) they are more mobile. In both systems doping (x) suppresses the Néel temperature (T_N) and a short-range “spin-glass” phase is exposed near $x=0.03$ at 8 K. It is only for $x \approx 0.055$ that superconductivity emerges in LSCO. LLCO, on the other hand, remains an insulator yet has a similar magnetic phase diagram at low dopings. The intermediate spin-glass region in LSCO allows the study of spin and charge dynamics prior to the onset of high-temperature superconductivity (HTS). A wide range of investigations in this intermediate region have provided evidence for the presence of antiferromagnetic domains separated by antiphase boundaries. Insofar as the charge is concerned, it remains unclear whether the system is separated by antiphase boundaries. In the pseudogap-doping regime studied here manifests spatial segregation of charge into locally ordered regions. The charge carriers slow at temperatures a couple of orders of magnitude lower than their spin counterparts—an anomalous situation in glassy systems in general. Significantly these low energy charge dynamics occur primarily along the CuO$_2$ planes, and none of these is evidenced in LLCO, which does not superconduct at any doping.

The LLCO and LSCO ($x=0.03$) high-quality single crystals were grown using the traveling-solvent floating-zone method. In order to eliminate possible hole doping by excess oxygen, the crystals were carefully heat treated under reducing conditions. The lithium concentrations were estimated to within ± 0.003. The crystal axes were determined by the x-ray Laue backscattering technique and samples were cut with a wire saw for both in-plane and out-of-plane measurements. Different contacts were used to ensure that the results were intrinsic, including evaporated Au and cured Dupont 6838 Ag paste. We tried depositing an Al$_2$O$_3$ layer and subtracting its contribution, but the results were unchanged. We also varied the geometry to confirm that the effects were not from depletion layers at the contacts. We performed our measurements down to 1.3 K in He dewars and to 300 mK using an adiabatic demagnetization refrigerator. Measurements were extended to 25 mK using two different dilution refrigerators. We measured the impedance Z and the phase angle θ. The phase angle varied from approximately 0° (resistive) at room temperature and low frequency ($f=100$ Hz) to 90° (low-loss dielectric) at low temperatures and higher frequency ($f=100$ kHz). The impedance varied by up to nine orders of magnitude in the course of an experiment. To compare such extreme variance, we extracted from our impedance measurements the real $\varepsilon'_R = \frac{d \sin \theta}{\sigma d A}$ and imaginary permittivity $\varepsilon'' = \frac{d \cos \theta}{\sigma d A}$, and the conductivity $\sigma = \omega \varepsilon_0 \varepsilon''$, where d is the distance between the contacts, A is the area of the contacts, $\omega = 2 \pi f$, and $\varepsilon_0 = 8.854 \times 10^{-12}$ F m$^{-1}$ is the vacuum permittivity.

Park et al. showed that an electronic glass occurs in LLCO ($x=0.023$), seen by a steplike drop in ε'' at a characteristic T which increases with f. Having replicated their results (not shown here), we then studied the effect of additional carrier doping. A small increase in doping to $x=0.03$ causes an astonishing increase in conductivity and reveals strong peaks in $\varepsilon''(T)$ (Fig. 1), the temperature of which increases with f. The roundedness and low frequencies in...
larger than the out-of-plane values at low temperatures. In
eters = 165(22) K and $E = 189(32)$ K. A power-law fit
with the application of a slowly varying field. The effect is less noticeable at higher frequencies
where the domains are excited reversibly if at all or at lower temperatures where they are sluggish on these time scales.

The f dependence of the peak in ε' is fitted against three standard forms (inset of Fig. 1).24 An Arrhenius fit
$\exp(-E/k_B T_f)$, giving an excitation energy of $E = 59$ K, is more convex than the data points. A Vogel-Fulcher fit
$\exp[-E/k_B (T - T_f)]$ gives a freezing temperature of $T_f = 189(32)$ K and
$E = 189(32)$ K. A power-law fit $[(T - T_f)^\beta]$ gives unphysical parameters ($n = 7.5$). This agrees with the following analysis of the conductivity and will be commented on below.

We extracted the conductivity from our impedance measurements (Fig. 2). The linearity of the 20 Hz data below
~ 40 K reveals Mott variable range hopping (VRH), $\sigma(T) = \sigma_0 \exp[-(T_0/T)^{\beta}]$, where $\beta = 1/(d+1)$; d is the dimensionality of the hopping.25 There is a f dependent deviation from VRH. This may be understood in terms of two components to the losses: VRH (indicated by the double-headed arrow in the main panel of Fig. 2) and dielectric loss. We subtracted the extrapolated best f independent VRH component from σ to reveal the f dependent loss peaks (lower inset of Fig. 2). A plot of the T dependence of these peaks (upper inset of Fig. 2) is in reasonable agreement with the data shown in the inset of Fig. 1. An Arrhenius fit again fails to describe the data, and a Vogel-Fulcher fit yields $T_f = -6.0(7)$ K and $E = 165(22)$ K. A power-law fit again gives unphysical parameters ($n = 7.7$).

The in-plane measurements (not shown) are qualitatively similar although σ and ε' are both an order of magnitude larger than the out-of-plane values at low temperatures. In the limit of $f \to 0$ our results agree with dc measurements on comparable ceramic samples12 while at higher frequencies our experiments reveal similar low energy charge dynamics to those seen in the out-of-plane conductivity above.

The negative T_f values obtained from the Vogel-Fulcher fits suggest that the charge does not freeze in these samples although it continues to slow as T is reduced. It is possible that other fits over a lower temperature region will yield a different result: this remains to be checked with further experiments. Nevertheless, the present results differ to those of Park et al.26 which show T_f of 3–5 K. This difference demonstrates the extreme sensitivity of the coupling between the low energy spin and charge dynamics to carrier doping, possibly related to the large $\Delta n_f/\Delta x (x \sim 0.03)$.13 At $x \sim 0.03$ none of the standard scaling analyses adequately describe the low energy dynamics of the charge over the temperature range studied.

We now turn to our results on LSCO. Extracting ε' from the impedance measurements reveals broad T dependent resonancelike peaks when plotted against f (Fig. 3). The broadening of the dielectric dispersion on cooling can be attributed to a broadening of the distribution of relaxation frequencies. This is suggestive of a distribution of sizes of electronic domains acting as coherent resonant oscillators. The peak f decreases when T is lowered, indicative of the dynamics slowing down. These observations are in accord with the emergence of dynamical charge heterogeneities at ultralow temperatures. Noise measurements, which reveal distinct switching fluctuations at temperatures of ≤ 0.3 K, further confirm this behavior.22,23

Although the results with field in-plane and out-of-plane look qualitatively similar, there are some notable differences (Fig. 3). The in-plane measurements are an order of magnitude larger. This may be understood by higher charge-carrier mobility in the CuO$_2$ planes, enhancing the measured polar-
power-law fit

in the millikelvin regime

This lends credence to the low energy, dynamic charge het-

ergergies mentioned above. We note that although the signa-
ture for the onset of dynamic charge heterogeneities occurs
in the millikelvin regime (Fig. 3), the dispersion shown in
Fig. 4 commences at temperatures of a few kelvin. We again
subtracted the VRH component. The losses are found to be
relatively frequency independent for \(f \approx 1 \) kHz but highly
dispersive for \(f \approx 1 \) kHz (inset of Fig. 4). It is possible to
distinguish a similar but signiﬁcantly smaller effect in the
out-of-plane conductivity for \(T \lesssim 500 \) mK (not visible on the
scale shown). The deviation occurs ﬁrst at the higher fre-
quencies and, for example, at 100 mK is monotonic with the
320 kHz conductivity 22% larger than the 120 Hz value.
That this effect is relatively small may be due to the low
out-of-plane charge-carrier mobility with a concomitant re-
duction in polarizability. The observed anisotropy (Figs. 3
and 4) indicates that the low energy dynamics of the elec-
tronic domains occur mainly in the CuO \(_2\) planes.

We then estimated the barrier energy by ﬁtting the con-
ductivity to the VRH equation. For the low \(T \) in-plane region
(Fig. 4(c); \(T = 1.3–5 \) K and \(T = 0.04–1 \) K) best ﬁts yield \(\beta = 1/4 \), and \(T_0 = 3.1 \times 10^3 \) K and \(T_0 = 340 \) K. We contrast
these \(x = 0.03 \) results with \(x = 0.02 \) data from the literature.
Ellman \textit{et al.} \cite{Ellman} reported \(\beta = 1/2 \) and \(T_0 = 74 \) K for \(x = 0.02 \) at
low temperatures (0.3–10 K), and associated the \(\beta \) value with weak screening between the interacting charge carriers.
To the best of our knowledge no low \(T \) data on \(x = 0.02 \) single
-crystals are available. Nevertheless, this comparison shows
that a small increase in carrier concentration in this doping
region is sufﬁcient to cause an onset of screening of interac-
tions at low temperatures. This is consistent with a rapid
doping induced increase in carrier mobility. \cite{Kivelson2}
In the lowest temperature out-of-plane region [Fig. 4(a); \(0.04–0.12 \) K], we obtain \(\beta = 1/2 \) and \(T_0 = 7 \) K while at higher temperatures
[Fig. 4(c); \(10–50 \) K], \(\beta = 1/4 \) and \(T_0 = 163 \) K. \cite{Kivelson3}
Between these temperature ranges [Fig. 4(b); \(0.5–10 \) K], a best ﬁt
yields \(\beta = 1/3 \) in agreement with other measurements in a
similar temperature range. \cite{Kivelson4} Again contrasting with the
literature, Birgeneau \textit{et al.} \cite{Birgeneau} reported \(\beta = 1/4 \) and \(T_0 = 1.1 \times 10^6 \) K for \(x = 0.02 \) in the temperature region of 10–100 K.
Thus, at higher temperatures, we see a sharp reduction in
barrier energy as doping increases from \(x = 0.02 \) to \(x = 0.03 \).
We associate the $\beta=1/2$ at low T with weak screening due to lower carrier mobility in this orientation, and the $\beta=1/3$ with a gradual transition between the higher-temperature and low-temperature regions.

In summary, we performed low T, low f impedance spectroscopy to compare the charge kinetics of LLCO and LSCO ($x=0.03$). Both systems exhibit low energy charge dynamics, which slow down as T is reduced. Comparison with previous work on $x=0.02$ (Refs. 26, 28, 29, and 31) shows that both systems undergo a sharp increase in mobility as doping increases to $x=0.03$. Our study of LSCO enabled the identification of a ground state with dynamic charge heterogeneities in the doping range where the pseudogap and spin-glass phase are present. The correlated slow dynamics identified are largely decoupled from their glassy spin counterparts and lie primarily along the CuO$_2$ planes which are responsible for the emergence of HTS at higher charge-carrier concentrations. Notably this was not so for LLCO. Our observations call for a reanalysis of the large region of the HTS phase diagram occupied by a spin-glass phase ($0.01 \leq x < 0.20$) and the role of low energy charge domains on the emergence of superconductivity in doped Mott insulators.

We thank A. Carrington, G. Catalan, D. Popović, and J. Scott for discussions, and S. Goh for technical support. We acknowledge J. Sarrao for LLCO ($x=0.023$) crystals used to replicate results. G.R.J. is indebted to the Skye Foundation and the Ernest Oppenheimer Memorial Trust for scholarships, and I2CAM and Magdalene College for travel grants. This work is supported by the EPSRC-GB, The Royal Society, the EURYI Scheme, and MEXT Contract No. CT-2006-039047.

30. Contrasting the in-plane and out-of-plane values of T_d is made difficult by the change in dimensionality. A more effective comparison can be made by looking at the slopes of Fig. 4. It will be noted that for $T > 1$ K, the in-plane conductivity decreases more rapidly than the out-of-plane component, and vice versa for $T < 1$ K.